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Stiff-string theory:
Richard Feynman 
on piano tuning
John C. Bryner

In a letter to his piano tuner, the great theoretical physicist talks about how the nonzero stiffness 
of piano strings affects tuning, and he conjectures that piano tuners may need to pay more 
attention to ear-created harmonics.

John Bryner is a retired aerospace physicist and piano tuner living in Orem, Utah.

feature

Theoretical physicist Richard Feynman (1918–88)
was probably the post–World War II era’s most brilliant, in-
fluential, and iconoclastic figure in physics. He helped re-
make the field of quantum electrodynamics and was re-
warded for that work with a share of the 1965 Nobel Prize in
Physics. The problem-solving techniques that he invented
permeated many areas of theoretical physics in the second
half of the 20th century.

During World War II, Feynman was recruited to work on
the Manhattan Project, first at Princeton University and later
at Los Alamos, where he became the youngest group leader
in the theoretical division. With the head of that division,
Hans Bethe, he devised a formula for predicting the energy
yield of a nuclear device. Feynman also took charge of the
project’s primitive computing effort, using a mix of new cal-
culating machines and human workers to process vast
amounts of numerical data and obtain the information
needed at Los Alamos.

He saw the first detonation of an atomic bomb, on 16 July
1945, at Alamogordo, New Mexico. All observers at the test
site were issued dark glasses to protect their eyes in case the
nuclear reaction was brighter than expected. Feynman didn’t
wear the glasses. He reasoned that only
UV radiation could harm his eyes, but UV
would be stopped by ordinary glass. So he
observed the detonation through the
windshield of a truck. Unfortunately, the
visible light, which did pass through the
windshield, was very bright, and Feyn-
man saw yellow blobs in his vision for
days afterward. That episode proved to be
a case of Feynman’s knowing too much for
his own good, but fortunately, his eyes suf-
fered no permanent damage. Though his
initial reaction to the test was euphoric, he
later felt anxiety about the force he had
helped unleash.

While working on the Manhattan
Project, Feynman became interested in the
combination locks used to secure the file
cabinets containing classified informa-
tion. He discovered a way to determine
the last two numbers of a three-number
combination, which he described to me at
a social gathering in 1985. Feynman had

noted that when the locks were open and lying on top of the
filing cabinets, all of the tumblers would be properly aligned.
He found that he could determine the last number of a com-
bination by rotating the knob in one direction, one number
at a time, until one of the tumblers was not aligned. By like-
wise rotating the knob in the other direction until a second
tumbler was not aligned, he could determine the combina-
tion’s second number. Thus by nonchalantly fiddling with a
lock as he visited with friends, he could determine the last
two numbers of its combination. Now all he had to do was
to determine the first number of the combination, which he
did by trying all of the possible numbers. There were only
about 30, so it didn’t take long. Scientists would open their
file cabinets in the morning and find inside a note saying
“Guess Who?” Everyone knew it was Feynman, but he never
got into trouble for his playful antics. In fact, his skills were
often utilized to open a file cabinet when data were needed
and the combination was unavailable. On those occasions,
Feynman said, he would request that everyone leave the
room so they would not learn his secret. He claimed that he
could open a lock in a couple of minutes, but he would read
a comic book or do something else for another 15 minutes so
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July 3, 1961

Dear Mr. McQuigg

I figured out the effect of wire stiffness on the vibration
frequency of strings. The mathematical formula is [note 1]

where f is the frequency you would get forgetting about stiff-
ness (for fundamental 

[note 2] for string of length l), T is the tension in the string, 
A is the area of the string cross-section, E is Young’s modulus
of steel (measures the stiffness of the wire), μ is the weight of
wire per unit length = 7.80 grams × A in squ. centimeters for
steel. I have worked this out roughly for steel wires—not for
the weighted bass strings. It says that the frequency is shifted
by

That is for middle C4, say, supposing T = 150 lbs and the
wire diameter is 1 mm (.04 inches), the fundamental 261 is
shifted by 1/20 (261/100)2 cents ≈ 0.35 cents, not much [note
3]. But the 3rd harmonic, used to match the fifth—ultimately
with the string G5 an octave above at 784 cycles (that is
3 × 261) the effect is 1/20 (784/100)2 cents ≈ 3 cents—still not
much.

But suppose we use this G5 to tune still higher up—to C6,
C7 and finally to G7 at 3135 = 261 × 2 × 2 × 3. Then it is com-
plicated to figure out because the diameter of the higher
strings is less and the tension is smaller so it depends a bit 
on just how you do the tuning (I mean which string you 
beat with which). But if we forget about these variations in
wire diameter and tension, our G7 will be higher than it
should be ideally by 1/20 (3135/100)2 [cents] ≈ 50 cents or half
of a “semitone” (or whatever you call one note = 100 cents.
1200 cents = octave).

The effect may be somewhat less than this (1) because of
the wire gauges decreasing near the top of the scale, (2) be-
cause you start at A4 = 440 rather than C4, so the starting note
is off by 1/20 (440/100)2 ≈ 1 cent to begin with, but that we
tune against a fork, so our entire shift is only 50 − 1 = 49 cents.
(Actually my arithmetic is not that accurate.) If you can send

me an exact schedule of where you start going up and how
to get, say, to G7 (I mean by what beats) and what the wire
gauges are (or better what their diameters are) I can get a bet-
ter figure for how far it will be off.

I haven’t tried to figure it for the bass strings.
Another effect that might alter things is the “give” of the

sounding board. The end pins on the bridge are not ab-
solutely rigid, of course, because they must move in order to
move the sounding board—so the bridge is not precisely at
the node of the string—but the node may be slightly behind
the bridge (for high notes—for low notes the node could be
even in front of the bridge if the sounding board is stiff
enough). It is too hard for me to figure how big these effects
would be.

Now comes the question: Suppose the effect is due to the
string stiffness as I suggested—but suppose it was even
stronger—say 200 cents for G7, and the same formula for all
strings (tension and diameter constant). Question: Is it “bet-
ter” to tune the piano by “ear” or by absolute frequencies?
[note 4]

That depends on the theory of music. First of all, of
course, [when?] playing with other instruments the character
and pitches of the other instruments must be considered—
but suppose the piano is alone.

Why does C5 and G5, say, sound good together? The
claim is made by some that the reason is that the harmonics
are in unison (i.e., the 3rd harmonic of C5 and the 2nd of G5
are in unison, in the not equi-tempered scale). Ordinarily we
take the 3rd harmonic of C5 to be at frequency 3 × f(C5), where
f(C5) is the fundamental of C5, say at 524. This should equal
2 × f(G5), so f(G5) should be 524 × 3/2 = 786. But suppose the
3rd harmonic, i.e., the vibration of the C5 string with two extra
nodes

,

is not at 3 × f(C5) but a little higher (1/20 (3 × 524/100)2 − 1/20
(524/100)2 = 10 cents higher) [note 5]. In order that it sound
well with the G5 string we must arrange that f(G5) is so set
that, not exactly 2 × f(G5), but rather, the true frequency of the
G5 string with one extra node

should be 524 × 3 raised by 10 cents. The net effect of all this
is that f(G5) will have to be raised a few cents. (To be exact,
f (G5) will be higher than f (C5) by 1/20 (786/100)2 − 1/20
(524/100)2 = 2 cents roughly.)[note 6] Now will the notes

true frequency = 1 +f ,f 2π EA2μ
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that his friends would think safecracking was difficult.
Feynman’s stature among physicists transcended even his

sizable contributions to the field. His colleagues universally
admired his bold and colorful personality unencumbered by
false dignity or notions of excessive self-importance. He was a
master calculator who could create a dramatic impression in a
group of scientists by slashing through a difficult numerical
problem. His intellectual achievements became a part of the
scenery of modern science. Feynman diagrams, Feynman path
integrals, and Feynman rules joined Feynman stories in the
everyday conversation of physicists. His colleagues may have
envied his flashes of inspiration, but they surely admired his
faith in nature’s simple truths, skepticism about official wis-
dom, and impatience with mediocrity.

The following is a transcript of a handwritten letter from

Feynman to his piano tuner, Howard McQuigg (1916–2002)
of Monrovia, California: McQuigg and I were neighbors in
the 1970s, and over time we became close friends. During one
of our many visits, he shared Feynman’s letter with me; the
online version of this article includes a copy of the original
letter. As far as I know, Feynman never formally learned
piano tuning, but he did own a piano, and he and McQuigg
had apparently conversed previously on the subject of pianos
and piano tuning. I think that had he wanted to, Feynman
would have been a fine piano tuner. 

In some places in the letter I have standardized notation
or cleaned up equation presentation and punctuation. Occa-
sional interjections direct the reader to explanatory notes that
follow the letter. The box on page 48 explains the basics of
piano tuning.
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sound well? They ought to—not only will the 3rd harmonic
of C5 and the 2nd harmonic of G5 be in unison—but the 6th
harmonic of C5 and the 4th harmonic of G5 will be too—etc.,
and this latter will be in unison with G7 fundamental [note
7], as it ought if and only if G7 is tuned high (by 48 cents rel-
ative to f(C5)) as it will be by ear automatically.

But another claim is that distortions of the ear create
harmonics automatically—so even a pure tone of 524 with
no natural harmonics (I mean those created by the in -
strument) and a pure tone of 786 sound well together
 because the 3rd harmonic created in the ear, or ear–brain
 system, of C5 fits with the 2nd of 786. These harmonics
 created by the ear (if they exist at all) must be exactly
three times frequency, etc. with no error—so the piano

should be tuned to absolute frequency.
Why are the ear-created (or bad-amplifiers-etc-in-radio-

and-phonograph-created) harmonics exact multiples? Sup-
pose the pure wave in is

—it gets amplified and distorted, say, to

which is flatter tops, for example. But this flat top wave is
equivalent to adding pure waves 

Musicians have developed their own jargon for naming musical
notes and relations between them. Before reviewing the basics
of piano tuning, I’ll define some of that jargon with the help of
the treble portion of the piano keyboard illustrated below.

Any two neighboring notes on the piano are said to differ by
a semitone interval. Twelve semitones span an octave, and you
can see in the illustration that the pattern of piano keys repeats
after each octave. Two notes that differ by a number of octaves
are given the same letter name; the octave is distinguished by a
subscript. So, the interval separating C4 and C5 is an octave.
Richard Feynman’s letter discusses at length the relation
between C5 and G5 , which are identified on the keyboard. The
illustration also specifies F4 (discussed later) and A4 , the note
sounded by the oboe to tune up an orchestra.

In all systems of tuning, every pitch may be derived from its
relationship to a standard. In the case of piano tuning, the usual
choice is to assign the frequency 440 Hz to the note A4. The fre-
quencies of all the other notes are set by counting the beat rates
that originate in upper, nearly coinci-
dent overtones when two notes are
struck simultaneously. One might have
thought that a piano could be tuned
with the frequencies of any two notes
related by simple whole-number ratios.
Then all pairs of notes would be sepa-
rated by “pure intervals,” and one wouldn’t need to worry about
beat counting. It is mathematically impossible, however, to have
only pure intervals in a standard 13-note-per-octave keyboard.
Some of the intervals must be altered, which results in beating.
Those altered tunings are referred to as temperaments.

Equal temperament is a system of tuning keyboard instru-
ments in which the frequency ratio for any two notes separated
by a semitone is 21/12. Rather different, unequal temperaments
are sometimes used for historical reasons. All temperaments are
modified in piano tuning because the steel strings have nonzero
stiffness, which causes the overtones to be higher in frequency
than for simple harmonics; the effect is called inharmonicity. To
quantify small frequency changes, piano tuners divide the semi-
tone interval into 100 cents. The frequency ratio of two notes
that differ by c cents is thus 2c/1200. As a result of inharmonicity, all
keyboard intervals are stretched in frequency. Variations from
equal temperament are almost negligible in the middle of the
keyboard, but for a small, aurally tuned piano they rise to about
30 cents sharp at the treble end and about 30 cents flat at the
bass. Larger pianos generally have less stretch, but it is always
present.

Most piano tuners nowadays, including me, regularly use an
electronic tuning device. The ETD makes the tuning process sim-

pler and less demanding on the ears. It usually produces good
results, but we sometimes need to make corrections to render
the tuning aurally acceptable. On the other hand, an ETD can
detect minor flaws in an aural tuning. There are piano technicians
with strong preferences on each side of the aural versus ETD
divide. Aural tuning uses the ear—the ultimate judge of what
sounds good. But human fatigue can make it difficult to tune in
a noisy environment or to duplicate results. The ETD works well
in noisy environments, never gets tired, and makes duplication
easy. Generally, one method is strong where the other is weak,
and many tuners prefer to use the best of both.

Aurally tuning a piano consists of three steps. The first is to
establish the proper pitch for one note, usually A4. Next is to tune
the temperament octave, usually the octave between F3 and F4

(F3, an octave below F4 , is not in the portion of the piano key-
board illustrated here). At last, using the temperament octave as
a standard, one can tune the rest of the piano. Note that when a
piano key is pressed, two or three strings inside the piano are

struck. A piano technician needs to
tune each string individually.

A simplified version of a tuning pro-
cedure goes something like this: Two of
the three strings of each note in the
temperament octave are muted so that
only one will vibrate when the corre-

sponding piano key is played. Then a 440-Hz tuning fork is
sounded and the tension in the A4 string is adjusted so that no
beats are heard. Next, one tunes A3 by playing A3 and A4 together
and adjusting the tension in the A3 string until no beats are
heard. Because of inharmonicity, the octave interval A3–A4 will be
slightly wider than 1200 cents.

Next, the “major third” interval F3–A3 is tuned. In equal tem-
perament, the frequency ratio of notes separated by a major
third is 24/12 (1.2599), about 14 cents wider than the pure major-
third interval of 5/4. The result is that a piano tuner who plays F3

and A3 together will hear about 7 beats per second. The beat rate
for major thirds increases as one goes up the keyboard; it dou-
bles to 14 beats per second for the next octave F4–A4 , doubles
again for F5–A5 , and so forth. The goal in setting the tempera-
ment octave is not to count theoretical beat rates exactly but to
make them progress evenly through the octave. Tuners use vari-
ous means to accomplish that goal.

After the temperament octave has been set and tested, it
serves as the standard for tuning the remaining notes of the
piano. One simply plays octaves and adjusts the tension in the
untuned note until there are no beats. If the process is carried out
carefully, the piano will sound good. In the end, tuning a piano is
an art as well as a science.

How to tune a piano

Octave

C4 F4 A4 C5 C6 G6 C7 G7 C8G5



www.physicstoday.org December 2009    Physics Today 49

 
To work, these must be exactly 1:3. To put it differently,
maybe the ear “likes” a perfectly repeating vibration—

 
which repeats exactly after 2 vibrations of C5 and 3 vibrations
of G5.

If this is the way things work—I mean [consonances?]
sound good—then we ought to correct our “aural” piano tun-
ing by appropriately lowering the high notes so they are
closer to the mathematical frequencies.

Someday maybe I’ll do some experiments to find out.

Make an artificial “electric organ” for which each note played
produces a mixture of pure tones, not at relative frequencies 
1; 2.00; 3.00; 4.00; etc. as an ideal string, or a wind instrument
like the voice does; but is badly offset—say like 1; 2.10; 3.18;
4.40; etc. by some formula and then set the 1st “octave” of this
organ so that its fundamental is 2.10 (1st harmonic 4.40, etc.)
[times] the note below, etc. Just as a “piano with an extreme
error for string stiffness” and see what it sounds like. For con-
sonant intervals like “octave,” “fifth,” etc. harmonics will be
always in unison—yet the frequencies are not 1; 2; 3; 4; etc.

Nobody could sing with it, of course (voice harmonics
are at 1; 2; 3; 4), and it might sound very strange—yet there
is the bare possibility that regular chords on it like major triad
would sound well enough. I’ll try to talk some student into
trying it.

Anyway we would finally know whether it’s the jarring
harmonics or the distortions from perfect repetitions of
[waves?] in the ear which is the basis of our feeling of disso-
nance. I suspect it is the latter and you piano tuners have been
mistuning pianos since they were invented. But who knows,
I must try the experiment. Yours,

Dick Feynman ■

=
+

so if C is:5

and if G is:5

together the ear gets:

time

repeat

Explanatory notes 
1. Feynman’s formula for the “true” frequency of a string with

finite stiffness may be written

where B = πEA2μf 2/T 2 is the inharmonicity coefficient; the other
terms are defined in the letter.

To evaluate B, I use the following data, obtained from the
Mapes Piano String Co. My values differ slightly from those
cited by Feynman. With diameter of string, 1 mm; string tension,
150 lb (667 N); density of steel, 7840 kg/m3; frequency, 261.6 Hz,
corresponding to the middle C of a piano; and Young’s modulus
for steel, 2.07 × 1011 N/m2; I find B = 0.00038.

As usual in piano work, especially for notes in the middle of
the keyboard, B ≪ 1. It gets larger at both ends of the keyboard,
which results in a greater frequency stretch. 

2. The equation should read 

That is, the “2” should be in the denominator, not the numerator
as in the letter. 

3. By definition, the measure of a frequency ratio in cents c for two
frequencies f1 and f2 is given by f2/f1 = 2c/1200. For additional details,
see the box on page 48.

4. The answer is that a piano tuned by ear sounds better. In 1961
Daniel Martin and W. Dixon Ward reported that listeners
unequivocally rejected strict equal temperament tuning in favor
of tuning by ear. As the figure on this page shows, tuning a piano
by ear results in a “stretched” scale in which the upper tones are
higher and the lower tones lower than in equal temperament.
For a typical small piano, the highest note is about 30 cents
sharp, and the lowest note is about 30 cents flat.

5. The first term in Feynman’s difference expression correctly
describes the ratio of the third harmonic to treble the fundamen-
tal. The subtracted term seems to have been added in the letter
as an afterthought. 

6. This is clearly a slip of the pen: The fundamental frequency for
G5 is about 3/2 that of C5. 

7. Because of inharmonicity, Feynman’s statement is not correct for
a real piano. The higher partial frequencies of a real piano string
are stretched more than the lower ones. Therefore, even if the
3rd partial of C5 is in unison with the 2nd partial of G5, the 6th
partial of C5 will still beat against the 4th partial of G5.
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Pianos sound better when they
are tuned by ear slightly away
from equal temperament, as
shown in a 1961 study by Daniel
Martin and W. Dixon Ward. The
red curve shows the aural tun-
ing of the technician used in the
Martin and Ward work. The blue
curve is a comparative standard
that averages over many aurally
tuned pianos. In equal tempera-
ment, the frequencies of two
neighboring notes on the piano
differ by 100 cents. (Adapted
from D. W. Martin, W. D. Ward, 
J. Acoust. Soc. Am. 33, 582, 1961.)


