Roshan Kakiya's Geometric Mean of the Cents of the Semitones with and without Inharmonicity for Balancing the Relationship between Harmonic and Inharmonic Coincident Upper Partials

# Geometric Mean of the Cents of the Semitones without Inharmonicity for Balancing the Relationship between Harmonic Coincident Upper Partials 

## Two Coincident Partials are Upper Partials (Partial Number > 1)

Geometric Mean of the Semitones (Cents)
$=\left\langle\left\{\left[1200 \times \log _{2}\left(P_{1}\right)\right] / S_{1}\right\} \times\left\{\left[1200 \times \log _{2}\left(P_{2}\right)\right] / S_{2}\right\}\right\rangle^{1 / N}$
$P_{1}$ is the partial number of the coincident partial of an interval's lower note.
$S_{1}$ is the number of semitones within $P_{1}$.
$P_{2}$ is the partial number of the coincident partial of an interval's upper note.
$\mathrm{S}_{2}$ is the number of semitones within $\mathrm{P}_{2}$.

N is the number of partials.

## One Coincident Partial is an Upper Partial (Partial Number > 1)

Geometric Mean of the Semitones (Cents)
$=\left\{\left[1200 \times \log _{2}\left(P_{1}\right)\right] / S_{1}\right\}^{1 / N}$
$P_{1}$ is the partial number of the coincident partial of an interval's lower note.
$S_{1}$ is the number of semitones within $P_{1}$.
$N$ is the number of partials.

## Example: Two Coincident Partials are Upper Partials

 (Partial Number > 1)I have used the 3 : 2 Fifth A4-E5 for my calculations below.
$P_{1}=3$ rd Partial of $A 4=3$
$S_{1}=19$
$P_{2}=2$ nd Partial of $E 5=2$
$S_{2}=12$
$N=2$

Geometric Mean of the Semitones (Cents)
$=\left\langle\left\{\left[1200 \times \log _{2}(3)\right] / 19\right\} \times\left\{\left[1200 \times \log _{2}(2)\right] / 12\right\}\right\rangle^{1 / 2}=100.051434164$ cents
3 : 2 Fifth A4-E5 (Cents)
$=7 \times\left\langle\left\{\left[1200 \times \log _{2}(3)\right] / 19\right\} \times\left\{\left[1200 \times \log _{2}(2)\right] / 12\right\}\right\rangle^{1 / 2}=700.360039147$ cents

Harmonic 3rd Partial of A4 (Cents) $=1200 \times \log _{2}(3)$
$=1901.955000865$ cents

Narrowed 3rd Partial of A4 (Cents) $=19 \times\left\langle\left\{\left[1200 \times \log _{2}(3)\right] / 19\right\} \times\left\{\left[1200 \times \log _{2}(2)\right] / 12\right\}\right\rangle^{1 / 2}$
$=1900.977249113$ cents

Harmonic 3rd Partial of A4 (Cents) / Narrowed 3rd Partial of A4 (Cents)
$=1901.955000865$ cents $/ 1900.977249113$ cents $=1.000514342$

Harmonic 2nd Partial of E5 (Cents) $=1200 \times \log _{2}(2)$
$=1200.000000000$ cents

Widened 2nd Partial of E5 (Cents) $=12 \times\left\langle\left\{\left[1200 \times \log _{2}(3)\right] / 19\right\} \times\left\{\left[1200 \times \log _{2}(2)\right] / 12\right\}\right\rangle^{1 / 2}$
$=1200.617209966$ cents

Widened 2nd Partial of E5 (Cents) / Harmonic 2nd Partial of E5 (Cents)
$=1200.617209966$ cents $/ 1200.000000000$ cents $=1.000514342$

## Example: One Coincident Partial is an Upper Partial

## (Partial Number > 1)

I have used the 2:1 Octave A4-A5 for my calculations below.
$P_{1}=$ 2nd Partial of $A 4=2$
$S_{1}=12$
$N=1$

Geometric Mean of the Semitones (Cents)
$=\left\{\left[1200 \times \log _{2}(2)\right] / 12\right\}^{1 / 1}=100.000000000$ cents

2:1 Octave A4-A5 (Cents)
$=12 \times\left\{\left[1200 \times \log _{2}(2)\right] / 12\right\}^{1 / 1}=1200.000000000$ cents

# Geometric Mean of the Cents of the Semitones with Inharmonicity for Balancing the Relationship between Inharmonic Coincident Upper Partials 

## Two Coincident Partials are Upper Partials (Partial Number > 1)

Geometric Mean of the Semitones (Cents)
$=\left\langle\left\{\left[1200 \times \log _{2}\left(\mathrm{P}_{1} \times\left[\left\{1+\mathrm{B}_{1} \times \mathrm{P}_{1}{ }^{2}\right\} /\left\{1+\mathrm{B}_{1}\right\}\right]^{1 / 2}\right)\right] / \mathrm{S}_{1}\right\} \times\left\{\left[1200 \times \log _{2}\left(\mathrm{P}_{2} \times\left[\left\{1+\mathrm{B}_{2} \times \mathrm{P}_{2}{ }^{2}\right\} /\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left\{1+\mathrm{B}_{2}\right\}\right]^{1 / 2}\right)\right] / \mathrm{S}_{2}\right\}\left.\right|^{1 / \mathrm{N}}$
$P_{1}$ is the partial number of the coincident partial of an interval's lower note.
$B_{1}$ is the inharmonicity coefficient of an interval's lower note.
$S_{1}$ is the number of semitones within $P_{1}$.
$P_{2}$ is the partial number of the coincident partial of an interval's upper note.
$B_{2}$ is the inharmonicity coefficient of an interval's upper note.
$S_{2}$ is the number of semitones within $P_{2}$.
N is the number of partials.

## One Coincident Partial is an Upper Partial (Partial Number > 1)

Geometric Mean of the Semitones (Cents)
$=\left\{\left[1200 \times \log _{2}\left(P_{1} \times\left[\left\{1+B_{1} \times P_{1}{ }^{2}\right\} /\left\{1+B_{1}\right\}\right]^{1 / 2}\right)\right] / S_{1}\right\}^{1 / N}$
$P_{1}$ is the partial number of the coincident partial of an interval's lower note.
$B_{1}$ is the inharmonicity coefficient of an interval's lower note.
$S_{1}$ is the number of semitones within $P_{1}$.
N is the number of partials.

## Example: Two Coincident Partials are Upper Partials

## (Partial Number > 1)

I have used the 3:2 Fifth A4-E5 for my calculations below.

```
P
B}1=\mathrm{ Inharmonicity Coefficient of A4 = 0.000664
S
P2 = 2nd Partial of E5 = 2
B2 = Inharmonicity Coefficient of E5 = 0.001234
S2}=1
N = 2
```

Geometric Mean of the Semitones (Cents)
$=\left\langle\left\{\left[1200 \times \log _{2}\left(3 \times\left[\left\{1+0.000664 \times 3^{2}\right\} /\{1+0.000664\}\right]^{1 / 2}\right)\right] / 19\right\} \times\left\{\left[1200 \times \log _{2}(2 \times[\{1+\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.0.001234 \times 2^{2}\right\} /\{1+0.001234\}\right]^{1 / 2}\right)\right] / 12\right\}\right\rangle^{1 / 2}=100.305154788$ cents
3: 2 Fifth A4-E5 (Cents)
$=7 \times\left\langle\left\{\left[1200 \times \log _{2}\left(3 \times\left[\left\{1+0.000664 \times 3^{2}\right\} /\{1+0.000664\}\right]^{1 / 2}\right)\right] / 19\right\} \times\left\{\left[1200 \times \log _{2}(2 \times[\{1+\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.0.001234 \times 2^{2}\right\} /\{1+0.001234\}\right]^{1 / 2}\right)\right] / 12\right\}\right\rangle^{1 / 2}=702.136083519$ cents

```
Inharmonic 3rd Partial of A4 (Cents)
= 1200 }\times\mp@subsup{\operatorname{log}}{2}{}{3\times[(1+0.000664\times\mp@subsup{3}{}{2})/(1+0.000664)\mp@subsup{]}{}{1/2}}=1906.537953837 cent
Narrowed 3rd Partial of A4 (Cents)
```



```
0.001234 \times 2 2} /{1+0.001234}]/\mp@code{1/2})]/12}\mp@subsup{)}{}{1/2}=1905.797940979 cents
```

Inharmonic 3rd Partial of A4 (Cents) / Narrowed 3rd Partial of A4 (Cents)
$=1906.537953837$ cents $/ 1905.797940979$ cents $=1.000388296$
Inharmonic 2nd Partial of E5 (Cents)
$=1200 \times \log _{2}\left\{2 \times\left[\left(1+0.001234 \times 2^{2}\right) /(1+0.001234)\right]^{1 / 2}\right\}=1203.194662329$ cents

Widened 2nd Partial of E5 (Cents)
$=12 \times\left\langle\left\{\left[1200 \times \log _{2}\left(3 \times\left[\left\{1+0.000664 \times 3^{2}\right\} /\{1+0.000664\}\right]^{1 / 2}\right)\right] / 19\right\} \times\left\{\left[1200 \times \log _{2}(2 \times[\{1+\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.0.001234 \times 2^{2}\right\} /\{1+0.001234\}\right]^{1 / 2}\right)\right] / 12\right\}\right\rangle^{1 / 2}=1203.661857461$ cents

Widened 2nd Partial of E5 (Cents) / Inharmonic 2nd Partial of E5 (Cents)
= 1203.661857461 cents $/ 1203.194662329$ cents $=1.000388296$

## Example: One Coincident Partial is an Upper Partial (Partial Number > 1)

I have used the $2: 1$ Octave A4-A5 for my calculations below.
$P_{1}=2$ nd Partial of $A 4=2$
$B_{1}=$ Inharmonicity Coefficient of $A 4=0.000664$
$S_{1}=12$
$N=1$

Geometric Mean of the Semitones (Cents)
$=\left\{\left[1200 \times \log _{2}\left(2 \times\left[\left\{1+0.000664 \times 2^{2}\right\} /\{1+0.000664\}\right]^{1 / 2}\right)\right] / 12\right\}^{1 / 1}$
$=100.143454339$ cents

2:1 Octave A4-A5 (Cents)
$=12 \times\left\{\left[1200 \times \log _{2}\left(2 \times\left[\left\{1+0.000664 \times 2^{2}\right\} /\{1+0.000664\}\right]^{1 / 2}\right)\right] / 12\right\}^{1 / 1}$
$=1201.721452071$ cents

## References

Anderson, B. and Strong, W., 2005. The effect of inharmonic partials on pitch of piano tones. The Journal of the Acoustical Society of America, 117(5), pp.3268-3272. Available at: https://www.researchgate.net/publication/7784661 The effect o f inharmonic partials on pitch of piano tones.

Kakiya, R., 2020. Anthony Willey's 88 Average Inharmonicity Constants from AO to C8. Piano Technicians Guild. Available at: https://my.ptg.org/communities/communityhome/digestviewer/viewthread?Groupld=43\&MessageKey=6de8 6f98-a71b-437d-90f9-9f5c99bcb9a4\&CommunityKey=6265a40b-9fd2-4152-a628bd7c7d770cbf.

