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A static analysis of the grand piano action is simple and much has been written about it.  Piano actions are typically set for a specific down weight—the amount of force it takes to slowly depress a key.  But the down weight only tells part of the story.  By definition, a pianist interacts with the piano action by moving the keys.  Therefore, the force felt by the pianist, and the speed with which he must depress the key to create a certain volume is highly dependent on the dynamics of the action.  All the principal components of the action, the key, the wippen, and the hammer, are rotating levers, so to analyze the action requires the physics of rotational dynamics
 
Sophisticated analyses of the piano action are available, but such analyses, despite their accuracy and ability to model subtle effects, fail in some respects.  Their density and mathematical complexity limit their accessibility, and in their description of minutiae, the larger, fundamental issues involved are often somewhat obscured.  As will be shown, the inertias of the main parts of the action—the keystick, wippen, and hammer assembly—are so different that even a simple analysis such as presented here will be sufficient to elucidate their relative contributions   
 
The principal simplifications are in the treatment of all action components as rigid bodies, and all pivots as perfect, with no friction and with only one degree of freedom.  Other simplifications will be described as they are introduced.  Although the errors of the model presented here are probably on the order of several percent instead of several tenths of a percent, the relative magnitude of the contributions of the major action components to the dynamics of the action will be revealed in a meaningful way.
 
The math required for the analysis is simple algebra, and the formulae required for the analysis are simple and few.  Let’s start by showing the relationship between the parameters of linear motion, which are more familiar to most people, and those of rotational motion1.
 
	Linear Motion (units)
	Rotational Motion (units)

	Displacement
	x (M)
	Angular displacement
	( (radians)

	Velocity
	v (M/sec)
	Angular velocity
	( (radians / sec)

	Acceleration
	a (M/sec2 )
	Angular acceleration
	( (radians / sec2 )

	Mass
	M (kG)
	Inertia
	I (kG m2 )

	Force
	F=Ma ( newtons)
	Torque
	T=I( (newton M)

	Kinetic energy
	1/2Mv2 (joules)
	Kinetic energy
	1/2I(2 ( joules)


 

The inertia of a point mass rotating at some radius around an axis of rotation is just its mass times the square of the radius.  A piano action, however, consists mostly of pivoting rods.  The inertia of a thin rod pivoting around one end is its total mass times it length squared divided by 3.  
 
The key, the wippen, and the hammer assembly are interconnected by different ratios.  That is, rotating the key through some angle moves the wippen through a different angle, and the wippen moves the hammer assembly through yet a different angle.  A question that must be answered is how the inertias of the wippen and hammer assembly are felt by the pianist at the point where the pianist’s finger touches the key.  Inertia is reflected through interconnected parts by the square of their rotational ratio.  The simplest example to consider may be that of two gears.  Let’s say that when gear one rotates one turn, gear two rotates two turns, for a ratio of 2:1.  The inertia of gear two, as felt at gear one, is the square of this ratio, or four times.  
 
Now, we will apply this relationship to the piano action.  Below are two levers, lever 1, pivoted from its left end, and lever 2, pivoted at its right end.  A small button at the free end of lever 1 causes it to push on lever two.  These two levers could represent the key and wippen, or the wippen and hammer assembly.
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If the right end of lever 1 moves up by a small distance (y, the left end of lever 2 moves up by the same distance.  Using the small-angle approximation, the angular movement of lever 1 is (y/L1, and the angular movement of lever 2 is (y/L2.  Therefore, the ratio of their angular motions is:
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So, the inertia of lever 2, as reflected to lever 1, is just (L1  / L2)2.  I should note that a second approximation was made to derive this simple formula.  As levers 1 and 2 rotate, their contact points, and therefore L1 and L2 vary.  In order to keep the math from getting messy indeed, the slight changes in L1 and L2 are ignored.  We will find that the inertias of the action components as felt by the pianist are so different that simplifications such as this will not obscure the lessons that can be drawn from the results.
 
Now, on to the analysis.  Both a static and dynamic analysis is performed, and in order to supply typical values for the various action parameters, the action parts from middle C of a Steinway B were weighed and measured.  Note that the use of mixed units may appear to be sloppy, but it was done for a reason—units most familiar to US piano technicians were used.  All results are expressed in metric, however.  Also, weights, which should be expressed in units of force, are expressed as mass because of the almost universal habit of doing so.  Only when necessary are they converted.
 

Action Analysis
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Lengths used to calculate various action ratios: 
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(L1) Length of the front part of the key from the pivot to the pianist's finger 
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(L2) Length of the back portion of the key from pivot to capstan 
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(L3) Length from wippen pivot to capstan contact point. 
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(L4) Length from wippen pivot to the jack/knuckle contact point. 
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(L5) Length from hammer-shank pivot to jack/knuckle contact point. 
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(L6) Length from hammer-shank pivot to hammer/string contact point. 

Density of various action materials: 
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Density of spruce 
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Density of maple 
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Density of lead 

Keystick calculations

For these calculations I will assume that the keystick has a constant cross section with no features other than the lead counter weights installed in it. The actul key tapers toward its back end, but also includes a back check that more or less offsets the mass and inertia lost by the tapering. As the intertia calculations will show, keystick dimensions do not have to be estimated with a high degree of accuracy. 
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Total Length of key 
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Width of key 
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Height of key 
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Length of key from its front edge to its pivot point 
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Length of key from its back edge to its pivot point 
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Length from key pivot to first lead weight 
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Length from key pivot to second lead weight 

The example key has two lead weights installed in it. Each one is a cylinder of about 0.49" diameter. 
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Volume of each lead weight 
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Mass of each lead weight 
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Mass of back portion of key 
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Mass of front portion of key less lead weights 

The force, expressed as mass, exerted by the key on the pianist's finger: 
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To calculate the moment of inertia of the keystick I use the standard formula for the moment of inertia of a thin rod. 
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moment of inertia of a thin rod 
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Hammer calculations 

For these calculations I assume that the hammer shank has a constant cross section. The hammer is considered to be a point mass. 
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Diameter of hammer shank 
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Mass of hammer/shank assembly with the assembly supported at the hammer-shank pivot point, the hammer shaft horizontal, the hammer pointing downward, with the hammer resting on the weight-measuring scale. 
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Mass of hammer shank (volume times density). 

To compute the mass of the hammer, we must subtract the weight of the shank from WThamp. We can consider the mass of the shank to be a point source located at the shank's center of mass, which because the shank is considered to be uniform, is at its physical center. Because the shank was effectively surrported at its end, and its center of mass is at its center point, the measured weight of the shank is one half of its total mass. 
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The force, expressed as mass, required to support the hammer/shank assembly at the knuckle is the sum of the weights of the hammer and hammer shank times their lever ratio. 
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Weight at knuckle 
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Moment of inertia of hammer/shank assembly 

Wippen calculations 

The wippen consists of quite a number of pieces, but to simplify calculations, its mass distribution is assumed to be uniform along its length. Although this assumption may seem dubious, calculations will show that the moment of inertia of the wippen as felt by the pianist is of so little consequence that the assumption is more than adequate. 
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Total mass of the wippen 

Force, expressed as a mass, required to support the wippen at the capstan contact point, with the wippen's pivot simply supported 
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Moment of inertia of the wippen using the formula for a thin rod 

Following are the various lever ratios in the action. 
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Key ratio 
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Wippen ratio 
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Hammer ratio 
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Strike ratio 

Strike ratios vary somewhat, but a value between 5 and 6 is typical. 

Static force supplied by the pianist's finger to support the hammer 
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The total downweight is the sum of the static force due to gravity plus the action friction. Friction is typically in the 8 to 12 gram range, and total downweight is typically 50 to 55 grams, so the value computed above is about what is expected. 

Inertia at pianist's finger 

The inertia experienced by the pianist is the sum of the interias of the hammer assembly, the wippen, and the key. As previously derived, the inertia is reflected through the lever system as the square of the lever ratios. 
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Contribution of hammer assy 
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Contribution of wippen 
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Contribution of key (previously calculated) 
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Total 

Force due to inertia 

We can now calculate the force due to inertia required to actuate the key. For simplicity, let's assume that the pianist applies a constant force to the key. We will start by calculating the torque. 
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Let's say it takes 0.1 second to depress the key 
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Torque equals the inertia times the angular acceleration 

From the standard formula, 
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we can calculate the angular acceleration 
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The key travel is typically about 10 mm for most pianos 
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From the standard formula 
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Torque supplied by the pianist to overcome inertia 

Torque divided by the lever arm calculates the force supplied by the pianist 
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Force 

How does this force compare to the static downweight of the action? To compare we must convert the weight, which, due to convention, we have been expressing as mass, to force. To do so we multiply by the acceleration of gravity. 
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Static downweight--assume friction plus static force equals 50 gm, which we must convert to force in order to compare with the force due to inertia. 

 
 
So, we see in our example that forces due to inertia are significant.  The example used a nominal time of 0.1 seconds to depress a key, but what is a typical range of times?  Experiments on my own piano show that key travel time for a hard blow can be as little as 0.02 seconds, and for a soft blow, 0.25 seconds.  The analysis shows that the force due to inertia varies as the reciprocal of the time squared, so for the 0.02-second blow, force due to inertia becomes 10.75 newtons, which is over 20 times the static force!  
 

Obviously, the inertia of the action has a highly significant effect on action feel.  In fact, one wonders why down weight and friction are typically the only parameters given in discussing action feel.  My conjecture is that static forces are easily measured with only a few weights.  Direct measurement of inertia, however, requires more sophisticated equipment—equipment whose cost would not be overly burdensome using today’s sophisticated and inexpensive electronics, but which would have been quite expensive and bulky using older mechanical technology.  Also, adjusting the down weight requires only the addition or subtraction of lead weights in the keys, whereas consistent inertia requires accurately adjusting hammer mass and/or action ratios—both if consistent tone is desired.
 

An important observation is that the inertia, as reflected to the pianist’s finger, of the hammer assembly is almost 7 times that of the key, and about 60 times greater than that of the wippen with the tested parts.  Some may be surprised at this finding and wonder if it could possibly be true.  There is a simple way to get an intuitive grasp of the great differences in inertias.

 

Let’s think about the velocities of the various action parts when a key is depressed, because as the famous Newton’s law shows, it takes force to accelerate a mass to a velocity.  The pianist’s finger attains some velocity as the key is depressed.  The capstan attains about ½ of this velocity because it is about ½ the distance from the key’s pivot point as is the pianist’s finger.  The jack attains a velocity a bit less than the finger velocity because it is less than twice as far from the wippen pivot as is the point where the key pushes on the wippen.

 

Think how much smaller and lighter the wippen is as compared to the key.  So, it is not surprising then that the force required to accelerate the wippen is much less than that of the key.  Now, remember that the hammer velocity is usually 5 to 6 times that of the pianist’s finger.  Other things being equal, force goes up as the square of the velocity attained.  So, it is sensible that the hammer’s inertia dominates.

 

Hammer mass and the hammer-shank pivot to knuckle/jack contact distance are the most important parameters to control to provide consistent inertia forces.  This distance is described as Lk in the analysis.  The reasons for this become obvious when inspecting the formula for hammer inertia as felt by the pianist’s finger, Ihamf.  Ignoring inertia of both key and wippen, this formula shows that the inertia varies directly as hammer mass and by the square of the action ratios.  Given the expectation that the action ratios may vary from nominal because of some typical tolerance in the placement of the pivot points, the greatest ratio error will arise from the shortest action length.  Lk, is by far the shortest distance, and so is the principal problem in this regard.  Using the example action parameters, a change in Lk of only 0.5 mm (0.020”) causes Ihamf to change by about 6%. Of course, any error in Lk can be compensated by a change in hammer mass, but hammer mass affects tone.

 

It is inevitable that the question of what inertia is best should arise.  A definitive answer cannot be provided, but we can explore what the effects caused by low or high inertia are. To do so, we must take a short diversion to explore the relationship between inertia and kinetic energy in the hammer assembly using a simplified hammer assembly model.  In the following analysis key and wippen inertias are ignored because they are so much less than that of the hammer.

 

Simplified Hammer/Shank Model

 

The picture below is a model of a hammer supported by its shank, and pivoting about its normal pivot point.  The hammer is modeled simply as a mass mham, the shank is considered massless, and the length of the shank is Lh.  
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To start, let's see how much torque we need to apply to impart a specify kinetic energy to the hammer.  We will use the following four formulas from the physics of rotational dynamics.
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                       Equation 1
                                       [image: image83.png]


                    Equation 2
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                      Equation 3   
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                        Equation 4
where T=torque, (=angle (radians), (=angular velocity, I=moment of inertia, and t=time.

If Equations 3 and 4 are solved for t and then equated, the formula [image: image86.png]


 is derived.  The terms of Equation 2 can be solved for (2 to yeild [image: image87.png]


 .  Substituting these relations into Equation 1 yields.
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                          Equation 5
 
Let’s consider Equation 5 for a moment.  It could be considered the canonical equation for energy because it is explicitly in energy’s fundamental units, force and distance, or as it is in the rotational case, torque and angle.  It shows that as long as the torque applied to the hammer assembly and the distance it travels remains constant, then inertia has no effect on the energy imparted to the hammer.  How can this be, you might ask.  The answer lies in the variable not show in Equation 5—time.  We can substitute Equations 3 and 4 into Equation 2, and derive Equation 6, which describes energy in what is probably a more useful form.
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                        Equation 6
 
What this equation shows is that there is a tradeoff between moment of inertia, time, and hammer travel-distance for constant energy.  So, if the hammer assembly is lowered in moment of inertia, the key must be depressed more quickly, or the hammer must travel a longer distance in order for energy to remain constant.  Analogously, if hammer moment of inertia is increased, the key must be depressed more slowly or the hammer must travel a shorter distance for energy to remain constant.
 
Clearly, the time it takes to press a key must be held within some range for a piano to operate and feel normal.  For example, in a fast passage, the pianist has no choice but to press the key rapidly in order to be able to play subsequent notes.  So, high hammer inertia will force rapid passages to be played with much force—so much for pianissimo.  Low hammer inertia will result in a piano with less volume, even with hard key strikes.
 
One might wonder if, for a given amount of energy supplied to the hammer, the ratio of static down weight vs. dynamic force due to inertia can be varied.    Somewhat surprisingly, the answer is yes.  To do the analysis, we will consider only the forces caused by the hammer mass and neglect all other inertias.  Please refer to the analysis for variable definitions.  Let’s start by defining a new variable R(​, which is the ratio of the hammer’s angular motion divided by the key’s angular motion.  From the basic equations, se know that
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where Ik is the inertia as felt by the pianist’s finger
 
The energy imparted to the hammer is 
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                 Equation 7
 
Also from the action analysis we know that the force due to hammer inertia at the key is
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                     Equation 8
where (k is the angular distance the key moves
 
The static force at the pianist’s finger is
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                    Equation 9
 
 
If we solve Equation 7 for t2 and substitute it into Equation 8, we derive
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                   Equation 10
 
If we now solve Equation 7 for R((k and substitute that into Equation 10, we get
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This result is interesting.  It says that for any given amount of energy imparted to the hammer, we can change the ratio between static and dynamic force by varying the hammer mass.  No other action parameter matters.  So, one can reduce the static force by reducing the hammer mass, or vice versa.  Of course, various action ratios and distances would have to be adjusted concomitantly.

 

In conclusion, we have seen that inertia plays a crucial role in the piano action, that ratios and hammer mass must be accurately held for inertia to be well controlled, that the wippen has virtually no effect on inertia, and the key has less than most people probably thought.  Finally we have learned that the ratio between static force and dynamic force can be adjusted by changing hammer mass.  

 

 

 1The standard formulas presented here can be found in any number of physics books.  I got them from Physics, the excellent text by Halliday and Resnick.
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